3x^2+x=305

Simple and best practice solution for 3x^2+x=305 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+x=305 equation:


Simplifying
3x2 + x = 305

Reorder the terms:
x + 3x2 = 305

Solving
x + 3x2 = 305

Solving for variable 'x'.

Reorder the terms:
-305 + x + 3x2 = 305 + -305

Combine like terms: 305 + -305 = 0
-305 + x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-101.6666667 + 0.3333333333x + x2 = 0

Move the constant term to the right:

Add '101.6666667' to each side of the equation.
-101.6666667 + 0.3333333333x + 101.6666667 + x2 = 0 + 101.6666667

Reorder the terms:
-101.6666667 + 101.6666667 + 0.3333333333x + x2 = 0 + 101.6666667

Combine like terms: -101.6666667 + 101.6666667 = 0.0000000
0.0000000 + 0.3333333333x + x2 = 0 + 101.6666667
0.3333333333x + x2 = 0 + 101.6666667

Combine like terms: 0 + 101.6666667 = 101.6666667
0.3333333333x + x2 = 101.6666667

The x term is x.  Take half its coefficient (0.5).
Square it (0.25) and add it to both sides.

Add '0.25' to each side of the equation.
0.3333333333x + 0.25 + x2 = 101.6666667 + 0.25

Reorder the terms:
0.25 + 0.3333333333x + x2 = 101.6666667 + 0.25

Combine like terms: 101.6666667 + 0.25 = 101.9166667
0.25 + 0.3333333333x + x2 = 101.9166667

Factor a perfect square on the left side:
(x + 0.5)(x + 0.5) = 101.9166667

Calculate the square root of the right side: 10.095378482

Break this problem into two subproblems by setting 
(x + 0.5) equal to 10.095378482 and -10.095378482.

Subproblem 1

x + 0.5 = 10.095378482 Simplifying x + 0.5 = 10.095378482 Reorder the terms: 0.5 + x = 10.095378482 Solving 0.5 + x = 10.095378482 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 10.095378482 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 10.095378482 + -0.5 x = 10.095378482 + -0.5 Combine like terms: 10.095378482 + -0.5 = 9.595378482 x = 9.595378482 Simplifying x = 9.595378482

Subproblem 2

x + 0.5 = -10.095378482 Simplifying x + 0.5 = -10.095378482 Reorder the terms: 0.5 + x = -10.095378482 Solving 0.5 + x = -10.095378482 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -10.095378482 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -10.095378482 + -0.5 x = -10.095378482 + -0.5 Combine like terms: -10.095378482 + -0.5 = -10.595378482 x = -10.595378482 Simplifying x = -10.595378482

Solution

The solution to the problem is based on the solutions from the subproblems. x = {9.595378482, -10.595378482}

See similar equations:

| 4x-1/3-x-2/5=8 | | 1/243^(4/5) | | 3+x+18=45 | | H-21/3= | | -7x-11 = -109 | | 6x+1=-x+1 | | 10+6x=4x+12 | | 6x-3=25+2x | | sqrt-2v+7=v-2 | | 2x+4=3x+(-1) | | -x+9=34-6x | | 14x-8=104 | | -6x-3=-33 | | x^2+12x+20=8 | | 3(5-a)-33=21a-6(3+4a) | | 8x-15 = 1 | | y-3/4=2 | | 2u=5 | | (1-lnx)*2x=0 | | s=-16t^2+15t+40 | | x-3y=-40 | | 3-5x=8x | | br^2-44r+120=-30 | | 3y+8x=128 | | 126/((216/6)/6) | | 3y+8=128 | | (-64)^(4/3)=0 | | 19=-d+13 | | (-64)^4/3=0 | | 4.5(x+4)=54 | | g+-16g+-16g=-7 | | 3/63 |

Equations solver categories